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Abstract. A picture for the thermodynamics of the glassy state is introduced. It assumes that
one extra parameter, the effective temperature, is needed to describe the glassy state. This explains
the classical paradoxes concerning the Ehrenfest relations and the Prigogine–Defay ratio. As a
second feature, the approach connects the response of macroscopic observables to a field change
with their temporal fluctuations, and with the fluctuation-dissipation relation, in a generalized
non-equilibrium way.

1. Introduction

Thermodynamics for systems far from equilibrium has long been a field of confusion. A
typical application is window glass, which is far from equilibrium: it is an undercooled liquid
that, in the glass formation process, has fallen out of its metastable equilibrium.

Until recently, the general consensus reached after more than half a century of research was:
Thermodynamics does not work for glasses, because there is no equilibrium. This conclusion
was partly based on the failure to understand the Ehrenfest relations and the Prigogine–Defay
ratio. It should be kept in mind that, so far, the approaches have leaned very heavily on
equilibrium ideas. The well-known works are the 1953 Davies–Jones paper [1] and the 1958
Gibbs–DiMarzio paper [2], while a 1981 paper by DiMarzio has the title ‘Equilibrium theory
of glasses’ and a subtitle ‘An equilibrium theory of glasses is absolutely necessary’ [3]. We
shall stress that such approaches are not always applicable, due to the inherent non-equilibrium
character of the glassy state. Actually, the above conclusion in italics is incorrect itself, the
proper statement being that ‘thermostatics does not work for glasses’. Let us stress that in
the literature ‘thermodynamics of glasses’ usually refers to actual systems under laboratory
conditions, i.e. far from equilibrium. These terminological issues show how regrettable it is
that ‘thermostatics’ got lost as an expression for ‘equilibrium thermodynamics’.

Thermodynamics is the most robust field of physics. Its failure to describe the glassy state
is quite unsatisfactory, since up to 25 decades in time can be involved. Naively we expect that
each decade has its own dynamics, basically independent of the other ones. We have found
support on this point in models that can be solved exactly. Thermodynamics then means a
description under smooth non-equilibrium conditions.

2. The thermodynamic picture for systems having an effective temperature

A system that, after a quench to a certain low temperature, slowly relaxes to equilibrium is
characterized by the time elapsed since the quench, sometimes called the ‘age’ or ‘waiting
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time’. For glassy systems this is of special relevance. For experiments on spin glasses it is
known that non-trivial cooling or heating trajectories can be described by an effective age [4].
Yet we do not wish to discuss spin glasses. They have an infinity of long timescales, or
infinite-order replica symmetry breaking.

We shall restrict consideration to systems with one diverging timescale, having, in the
mean-field limit, one step of replica symmetry breaking. They are systems with first-order-
type phase transitions, having discontinuous order parameter, but usually no latent heat.

We consider transitions for glass-forming liquids as well as for random magnets. The
results map onto each other on interchanging volume V , pressure p, compressibility κ =
−∂ lnV/∂p, and expansivity α = ∂ lnV/∂T , with magnetization M , field H , susceptibility
χ = (1/N) ∂M/∂H , and ‘magnetizability’ α = (−1/N) ∂M/∂T , respectively.

The picture to be investigated in this work applies to systems for which the non-equilibrium
state involves two well-separated timescales. It can then be characterized by three parameters,
T , p, and the effective temperature Te(t). For model systems to be discussed below, this
quantity follows from analytically solving the dynamics of the system; for realistic (model)
glasses that can be approximately described by a two-timescale picture, it could follow from
appropriate (numerical) experiments [5]. For a set of smoothly related cooling experiments
Ti(t) at pressures pi , one may express the effective temperature as a continuous function:
Te,i(t) → Te(T , p). For the given set of experiments this sets a surface in (T , Te, p) space.
On combining with other experiments, such as cooling at a different rate, or first cooling
and then heating, the surface becomes multi-valued. To cover the whole space one needs to
perform many experiments, e.g., at different pressures and different cooling rates. The results
should agree with findings from heating experiments and aging experiments. Thermodynamics
amounts to giving differential relations between observables at nearby points in this space.

Of special interest is the thermodynamics of a thermal body at temperature T2 in a heat
bath at temperature T1 = T . A basic assumption is separability of timescales, and consequent
separability of phase space, allowing one to identify entropies S1 and S2. (For the energy, such
a decomposition cannot be carried out.) This set-up allows one to maintain the difference in
temperatures, and applies to mundane situations such as a cup of coffee, or an ice cream, in a
room. The change in heat of such systems obeys d̄Q � T1 dS1 + T2 dS2.

A similar two-temperature approach proves to be relevant for glassy systems. The known
exact results on the thermodynamics of systems can be summarized by the very same change
in heat [6, 7]:

d̄Q = T dSep + Te dI (1)

where Sep is the entropy of the equilibrium processes, i.e. the fast or β-processes that have
timescale less than the observation time. I is the configurational entropy of the slow or
configurational processes (α-processes), also known as information entropy or complexity. In
the standard definition [2], the configurational entropy Sc is the entropy of the glass minus
that of the vibrational modes of the crystal. For polymers this still includes short-distance
rearrangement, which is a relatively fast mode. It was confirmed numerically that Sc indeed
does not vanish at any temperature, and it does not fit well to the Adam–Gibbs [8] relation
τeq ∼ exp(C/T Sc) [9]. Our quantity I only involves long-time processes; the relatively fast
ones are included in Sep. To stress that in I only the slow modes of Sc contribute, it would
deserve a separate name—the most natural one being complexity. The applicability of an
Adam–Gibbs-type relation τeq ∼ exp(C/T I) remains an open issue, but it holds in a toy
model for the standard ‘folklore’ of the glassy state [10].

If a system has a set of processes i with very different timescales τi and partial entropies
Si , one can define I as the sum of the Si having τi > τeq/10, where τeq = max τi is the
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equilibrium relaxation time. For a system quenched to a low temperature and aging there for
a time t , the sum would be restricted to τi > t/10.

2.1. First and second law

For a glass-forming liquid the first law dU = d̄Q + d̄W becomes

dU = T dSep + Te dI − p dV. (2)

It is appropriate to define the generalized free enthalpy

G = U − T Sep − TeI + pV. (3)

This is not the standard free enthalpy, since Te �= T . It satisfies

dG = −Sep dT − I dTe + V dp. (4)

The total entropy is

S = Sep + I. (5)

The second law requires d̄Q � T dS, leading to (Te − T ) dI � 0, which merely says that
heat goes from high to low temperatures.

Since Te = Te(T , p), and both entropies are functions of T , Te, and p, expression (1)
yields the specific heat Cp = ∂Q/∂T

∣∣
p

. In the glass transition region all factors, except ∂T Te,
are basically constant. This leads to

Cp = C1 + C2
∂Te

∂T

∣∣∣∣
p

. (6)

Precisely this form was assumed half a century ago by Tool [11] as starting point for the study
of caloric behaviour in the glass formation region, and it has often been used for the explanation
of experiments [1, 12]. It is a direct consequence of equation (1).

For magnetic systems the first law gives

dU = T dSep + Te dI − M dH. (7)

As above, one can define the generalized free energy F = U − T Sep − TeI. It satisfies the
relation dF = −Sep dT −I dTe−M dH . In an aging system (fixed T andH ) the rate of change
Ḟ = −IṪe is usually positive. In the literature [8, 24], the ‘experimental’ or ‘dynamical’ free
energy Fdyn = U −T (Sep + I) has also been considered. It evolves as Ḟdyn = (Te −T )İ; thus
it is related to entropy production, and always negative.

2.2. Modified Maxwell relation

For a smooth sequence of cooling procedures of a glassy liquid, equation (2) implies a
modified Maxwell relation between macroscopic observables such as U(t, p) → U(T , p) =
U(T , Te(T , p), p) and V . This solely occurs since Te is a non-trivial function of T and p for
the smooth set of experiments under consideration.

For glass-forming liquids it reads

∂U

∂p

∣∣∣∣
T

+ p
∂V

∂p

∣∣∣∣
T

+ T
∂V

∂T

∣∣∣∣
p

= T
∂I
∂T

∣∣∣∣
p

∂Te

∂p

∣∣∣∣
T

− T
∂I
∂p

∣∣∣∣
T

∂Te

∂T

∣∣∣∣
p

+ Te
∂I
∂p

∣∣∣∣
T

. (8)

In equilibrium Te = T , so the right-hand side vanishes. For a glassy magnet one has

∂U

∂H

∣∣∣∣
T

+ M − T
∂M

∂T

∣∣∣∣
H

= Te
∂I
∂H

∣∣∣∣
T

+ T

(
∂Te

∂H

∣∣∣∣
T

∂I
∂T

∣∣∣∣
H

− ∂Te

∂T

∣∣∣∣
H

∂I
∂H

∣∣∣∣
T

)
. (9)
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2.3. Ehrenfest relations and the Prigogine–Defay ratio

In the glass transition region a glass-forming liquid exhibits smeared jumps in the specific heat
Cp, the expansivity α, and the compressibility κ . If one forgets about the smearing, one may
consider them as true discontinuities, yielding an analogy with continuous phase transitions
of the classical type.

Denoting the discontinuities as �O = Oliquid −Oglass, we may follow Ehrenfest and take
the derivative of �V (T , pg(T )) = 0. This yields the ‘first Ehrenfest relation’

�α = �κ
dpg

dT
(10)

while for a glassy magnet �α = �χ dHg/dT .
The conclusion drawn from half a century of research on glass-forming liquids is that

this relation is never satisfied [1, 13–15]. This has very much hindered progress on a thermo-
dynamical approach. However, from a theoretical viewpoint it is hard to imagine that something
could go wrong when just taking a derivative. McKenna [16] and, independently, also we [6]
have pointed out that this relation is indeed satisfied automatically, but it is important say what
is meant by κ in the glassy state.

Let us make an analogy with spin glasses. In mean-field theory they have infinite-order
replica symmetry breaking. From the early measurements of Canella and Mydosh [17] on
AuFe it is known that the susceptibility depends logarithmically on the frequency, and so on
the timescale. The short-time value, called the zero-field-cooled (ZFC) susceptibility, is a
lower bound, while the long-time value, called the field-cooled (FC) susceptibility, is an upper
bound. Let us use the term ‘glassy magnets’ for spin glasses with one step of replica symmetry
breaking. They are relevant for comparison with glass-forming liquids. For them the situation
is worse, as the ZFC value is discontinuous immediately below Tg . This explains why already
directly below the glass transition different measurements yield different values for κ . These
notions are displayed in figure 1.

Previous claims about the violation of the first Ehrenfest relation can be traced back to the
equilibrium idea that there is one, ideal κ , to be inserted in (10). Indeed, investigators always
considered cooling curves V (T , pi) at a set of pressures pi to determine �α and dpg/dT .
However, �κ was always determined in another way, such as by measurement of the speed of
sound, or by making pressure steps [18]. In equilibrium, such alternative determinations would
yield the same outcome. For glasses this is not the case: the speed of sound is a short-time
process, and additional pressure steps modify the glassy state. Therefore alternative procedures
should be avoided, and only the cooling curves V (T , pi) should be used. They constitute a
liquid surface Vliquid(T , p) and a glass surface Vglass(T , p) in (T , p, V ) space. These surfaces
intersect, and the first Ehrenfest relation is no more than a mathematical identity concerning the
intersection line of these surfaces. It is therefore automatically satisfied [6]. The most careful
data that we came across were collected by Rehage and Oels for atactic polystyrene [18]. In
figure 2 we present those data in a three-dimensional plot, underlining our point of view.

The second Ehrenfest relation follows from differentiating �U(T , pg(T )) = 0. The
relation obtained will also be satisfied automatically. However, one then eliminates ∂U/∂p by
means of the Maxwell relation. We have already discussed the fact that away from equilibrium
it is modified. The equality Te(T , pg(T )) = T implies

dTe
dT

= ∂Te

∂T

∣∣∣∣
p

+
∂Te

∂p

∣∣∣∣
T

dpg

dT
= 1. (11)
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Figure 1. A schematic plot of the field-cooled (FC) and zero-field-cooled (ZFC) susceptibility
in realistic spin glasses and in glassy magnets, as a function of temperature, in arbitrary units.
In realistic spin glasses the infinite time or field-cooled susceptibility is larger than the short-
time or zero-field-cooled susceptibility. In magnetic analogues of realistic glasses the short-time
susceptibility even has a smeared discontinuity at the glass transition, yielding a value of χ that
depends on the precise type of experiment which is performed. In glass-forming liquids the same
happens for the compressibility.

Using equation (8) and inserting this relation, we obtain

�Cp

TgV
= �α

dpg

dT
+

1

V

(
1 − ∂Te

∂T

∣∣∣∣
p

)
dI
dT

. (12)

The dI/dT term constitutes the total derivative along the glass transition line, ∂I/∂T +
(∂I/∂p) dpg/dT . Its prefactor only vanishes at equilibrium (Te = T ), in which case the
standard Ehrenfest relation is recovered. For glassy magnets one has similarly

�C

NT
= �α

dHg

dT
+

1

N

(
1 − ∂Te

∂T

∣∣∣∣
H

)
dI
dT

. (13)

The Prigogine–Defay ratio is defined by

! = �Cp �κ

T V (�α)2
. (14)

For equilibrium transitions it should be equal to unity. Assuming that at the glass transition a
number of unspecified parameters undergo a phase transition, Davies and Jones derived that
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Figure 2. Data on the glass transition for cooling atactic polystyrene at the rate 18 K h−1, scanned
from the paper of Rehage and Oels [18]: specific volume V (cm3 g−1) versus temperature T (K)
at various pressures p (kbar). As confirmed by a polynomial fit, the data on the liquid essentially
lie on a smooth surface, and so do the data on the glass. The first Ehrenfest relation describes no
more than the intersection of these surfaces, and is therefore automatically satisfied. The values
for the compressibility derived in this manner will generally differ from results obtained via other
procedures.

! � 1 [1], while DiMarzio showed that in that case the correct value is ! = 1 [19]. For
glasses, typical experimental values are reported in the range 2 < ! < 5. It was therefore
generally thought that ! � 1 is a strict inequality arising from the requirement of mechanical
stability.

Since the first Ehrenfest relation is satisfied, it holds that

! = �Cp

T V �α (dpg/dT )
= 1 +

1

V�α

(
1 − ∂Te

∂T

∣∣∣∣
p

)
dI
dp

. (15)

�Cp and �α can be measured by cooling at a fixed pressure, but dpg/dT depends on cooling
experiments at two pressures, or, more precisely, on the smooth set of cooling experiments.
Therefore dpg/dT can be small or large, implying that ! depends on the set of experiments.
As a result, it can also be below unity. Rehage and Oels found ! = 1.09 ≈ 1 at p = 1 kbar,
using a short-time value for κ . Reanalysing their data, we find from (15), where the proper
long-time κ has been inserted, a value ! = 0.77. Notice that it is below unity. The commonly
accepted inequality ! � 1 is based on the equilibrium assumption of a unique κ . Our
theoretical arguments and the Rehage–Oels data show that this assumption is incorrect.

2.4. Fluctuation formula

The basic result of statistical physics is that it relates fluctuations in macroscopic variables to
responses of their averages to changes in external field or temperature. We wondered whether
such relations generalize to the glassy state.
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In cooling experiments at fixed field it holds that M = M(T (t), Te(t, H),H). For a
thermodynamic description one eliminates time, implying that M = M(T, Te(T ,H),H).
One may then expect three terms:

χ ≡ 1

N

∂M

∂H

∣∣∣∣
T

= χfluct(t) + χ loss(t) + χ conf(t). (16)

The first two terms add up to (1/N)(∂M/∂H)
∣∣
T ,Te

. To find them separately, we switch from
a cooling experiment to an aging experiment at the T , Te, and H considered, by keeping,
in Gedanken, T fixed from then on. The system will continue to age; this is expressed by
Te = Te(t; T ,H). We may then use the equality

∂M

∂H

∣∣∣∣
T ,t

= ∂M

∂H

∣∣∣∣
T ,Te

+
∂M

∂Te

∣∣∣∣
T ,H

∂Te

∂H

∣∣∣∣
T ,t

. (17)

We have conjectured [20] that the left-hand side may be written as the sum of the fluctuation
terms for fast and slow processes, defining the fluctuation contribution

χfluct(t) = ∂M

∂H

∣∣∣∣
T ,t

= 〈δM2(t)〉fast

NT (t)
+

〈δM2(t)〉slow

NTe(t)
. (18)

The first term is just the standard equilibrium expression for the fast equilibrium processes.
Notice that the slow fluctuations enter with their own temperature, the effective temperature.
This decomposition is confirmed by use of the fluctuation-dissipation relation in a form to be
discussed below. From equation (17) then follows the ‘loss’ term

χ loss(t) = − 1

N

∂M

∂Te

∣∣∣∣
T ,H

∂Te

∂H

∣∣∣∣
T ,t

. (19)

It is related to an aging experiment. In some models it is small [20, 21], but in another
model [10] it is of order unity. There occurs in equation (16) also a configurational term

χ conf = 1

N

∂M

∂Te

∣∣∣∣
T ,H

∂Te

∂H

∣∣∣∣
T

. (20)

It originates from the difference in the system’s structure for cooling experiments at nearby
fields. This is the term that is responsible for the discontinuity of χ or κ at the glass transition.
Its existence was anticipated by Goldstein and Jäckle [13, 14].

2.5. Fluctuation-dissipation relation

Nowadays quite a lot of attention is paid to the fluctuation-dissipation relation in the aging
regime of glassy systems. It was put forward in works by Sompolinsky [22] and Horner [23,24],
and generalized by Cugliandolo and Kurchan [25]; see [26] for a review.

In the aging regime there holds a fluctuation-dissipation relation between the correlation
function C(t, t ′) = 〈δM(t) δM(t ′)〉 and G(t, t ′), the response of 〈M(t)〉 to a short, small
field-change δH(t ′) applied at an earlier time t ′:

∂C(t, t ′)
∂t ′

= Te(t, t
′)G(t, t ′) (21)

with Te(t, t
′) being an effective temperature, also denoted as T/X(t, t ′) [26].

We have observed that in simple models without fast processes, Te(t, t ′) = T̃e(t
′) is

a function of one of the times only [20, 21]. One then expects T̃e(t) to be close to the
‘thermodynamic’ effective temperature Te(t). We have shown that [21]

T̃e(t) = Te(t) − Ṫe(t)

(
∂ lnC(t, t ′)

∂t ′

∣∣∣∣
t ′=t

)−1

+ · · · . (22)
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So the effective temperatures Te and T̃e are not identical. However, in the models analysed so
far, the difference is subleading in 1/ln t .

Notice that the ratio ∂t ′C(t, t
′)/G(t, t ′) = T̃e(t

′) is allowed to depend on time t ′. The
situation with constant Te is well known from mean-field spin glasses with one step of
replica symmetry breaking [26], but we have not found such a constant Te beyond mean-
field theory [20, 21]. Only at exponential timescales does the mean-field spin glass behave as
a realistic system [7].

2.6. Timescale arguments

Consider a simple system that has only one type of process (α-processes), which falls out of
equilibrium at some low T . When it ages a time t at T = 0, it will have achieved a state
with effective temperature T e, that can be estimated by equating time with the equilibrium
timescale, t = τeq(T e). We have checked in solvable models that, to leading order in ln t , it
holds that T e = Te. (The first non-leading order turns out to be non-universal.) This equality
also is found in cooling trajectories, when the system is well inside the glassy regime. It says
that the system basically has forgotten its history, and ages on its own, without caring about
the actual temperature. Another way of saying this is that the dynamics in each new decade
of time is basically independent of that in the previous decade.

This timescale argument, however, is not very strong. Though it works for simple model
glasses, it does not work, for instance, for realistic spin glasses.

3. Solvable models

In the above, a variety of effective temperatures have been defined, and other definitions
appeared also [27]. The most prominent one seems to us the ‘thermodynamical’ Te, that
appears in the second law d̄Q � T dSep +Te dI. If these effective temperatures are (basically)
the same, then the above description leads to a coherent two-temperature picture. Let us now
discuss models where this is or could be the case. (In principle also an effective field can
occur [10]; we shall not consider that complication.)

The thermodynamic part of the above picture has been constructed from aging properties of
the p-spin model [6,24]. If the limit N → ∞ is taken first, the aging dynamics starting from a
random initial configuration follows from a set of equations very similar to the mode-coupling
equations for glasses [24]. The long-time dynamical properties also follow from a replica
calculation using the marginality condition [28]. Our first step has been to find the physical
meaning of the marginal replica free energy. Hereto we analysed the Thouless–Anderson–
Palmer (TAP) partition sum at zero field [29] and non-zero field [7]. In both cases we convinced
ourselves that the replica free energy (the logarithm of the ordinary partition sum) does indeed
coincide with the logarithm of the TAP partition sum. In other words, nothing went wrong
on using replicas, and a physical interpretation should be anticipated. After the appearance of
reference [27], we were convinced that T/x should be interpreted as a thermodynamic effective
temperature [7], and it was already known that this combination appeared in the fluctuation-
dissipation relation [25]. My studies with Sherrington and Hertz [30] on the p-spin model
with a ferromagnetic coupling led to the insight that the fluctuation formula (16) is valid there
without the loss term.

Similar results follow for a directed polymer model with glassy behaviour [6,31]. In this
model a directed polymer moves on a flat substrate with randomly located ridges. It prefers
to lie in regions where ridges are widely separated. These Griffiths or Lifshitz singularities
are the ‘TAP states’ of the problem. They occur often enough when the transverse width W
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scales exponentially in the longitudinal width W ∼ exp(L1/3). The statics of this model has
a Kauzmann transition. The long-time dynamics involves hopping between these states. For
an ensemble of non-interacting polymers starting from a random initial configuration, it has
been argued that the motion involves a flow to states with decreasing complexity, as happens
in the p-spin model at exponential timescales [7]. Nevertheless, the dynamics of the model
deserves further attention.

Very informative are models with exactly solvable parallel Monte Carlo dynamics, such
as independent harmonic oscillators [20, 21, 32] or independent spherical spins in a random
field [20, 21]. In both cases the equilibrium timescale follows an Arrhenius law, which leads
to glassy behaviour at low temperatures when cooling or when aging from a random initial
configuration. Since these models are not mean-field-like, they have a proper dynamics,
which satisfies the fluctuation formula (16). The effective temperatures decay as 1/ln t , with
a common prefactor, but different 1/ln2 t corrections.

A model with a set of fast modes and a set of slow modes, that have a Vogel–Fulcher–
Tammann–Hesse law for the divergence of the equilibrium timescale, has also been formulated.
It allows one to study glassy dynamics below the Kauzmann temperature [10].

The two-temperature approach put forward here also explains why thermodynamics
applies to black holes [33] and star clusters [34].
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